
Large technology-led transformation pro-
grams are important for creating business
value and building strategic capabilities
across industries. With many organizations
spending around 50 percent of their IT
budget on application development, the
ability to execute software programs faster
and at lower cost is essential to success
for many transformation projects. However,
the quality of execution leaves much to be
desired. A joint study by McKinsey and Oxford
University found that large software projects
on average run 66 percent over budget and
33 percent over schedule; as many as 17
percent of projects go so badly that they can
threaten the very existence of the company.1

Some large-scale application-development
projects are particularly challenging because

of their complexity and high degree of
interdependency among work streams.
This category includes development of
systems for telecommunications billing,
insurance claims, tax payments, and
core retail-banking platforms. These
projects demand close coordination due
to frequent refinements to the original
user requirements.

Such coordination can only happen by
breaking down the traditional silos in
application development—an achievement
often associated with the agile software-
development approach. But agile is mainly
applicable to smaller projects with minimal
up-front definition of user requirements
that can be cleanly divided into a number
of parallel subprojects.2

Achieving success in large,
complex software projects

Using cross-functional teams to break down silos improves the chances

of success when building highly complicated systems.

B
il
l
B

u
tc

h
e
r

Sriram

Chandrasekaran,

Sauri Gudlavalleti,

and Sanjay Kaniyar

10

1�Michael Bloch, Sven
Blumberg, and Jürgen Laartz,
 “Delivering large-scale IT
projects on time, on budget,
and on value,” McKinsey on
Business Technology, October
2012, mckinsey.com.

2�In agile application
development, each subproject
can be handled by a team of
six to ten people. The teams
work in bursts of two to three
weeks to define requirements
on the go and deliver updated
code in each burst.

11

Elements of iterative application-develop-
ment practices inspired by agile, lean,3
and test-driven development4 will certainly
play roles in complex projects like the ones
mentioned above. However, in our experience,
these approaches need to be combined with a
new organizing construct featuring cross-func-
tional teams. We call these teams “work cells.”

The coordination challenge
in application development

The three disciplines involved in application-
development projects—business analysis,
development, and testing—often work in silos,

with inefficient information flow between
them (Exhibit 1). This is a minor issue in
small application-development projects,
but the communication problems grow larger
in big, complex programs. The risk increases
further when, as is often the case, project
managers and business analysts, who gather
user requirements for the applications, are
located onshore while developers and testers
are offshore. This slows communication
because there’s limited overlap of working
hours between time zones. What’s more,
information is exchanged among disciplines
in a hub-and-spoke manner. For example, the
code defects identified by testers are assigned
to a senior application developer, who then

Takeaways

Coordination is a common

challenge in application

development, particularly

for large, complex projects.

Moving away from tradi­

tional silos and toward

work cells can help.

These cross-functional

units have many benefits,

including increased

accountability, better

communication, and

shorter iterations.

3�Lean is an integrated system
of principles, operating
practices, and methods
focused on getting the right
things to the right place
at the right time and in
the right quantity while
minimizing waste and being
flexible and open to change.

4�Test-driven development is
an application-development
practice where a developer
writes unit tests for a piece of
functionality before writing
the code for the functionality.

Module 2

McKinsey On Business Technology 2014 — Workcells

Exhibit 1 of 2

Traditional application-development teams are organized
by function, with multiple handoffs.

Requirements
gathering

Development Quality assurance/
functional testing

User-acceptance
testing

Business analysts Developers Testers Business users

Module 1

Gather
requirements

Analyze and
develop code

Test and raise
defects

Test and raise
defects

Module 3

Module 4

Clarify
requirements

Fix defects Retest and certify Retest and certify

Business analysts
don’t stay on for
user-acceptance
testing

Different
developers work
on original code
and defect fixes

Testers given
incentive to raise
defects rather
than to ensure
module delivery

Business users
get involved at
beginning and
end only

Exhibit 1

12 McKinsey on Business Technology Number 34, Summer 2014

assigns the coding rework to the rest of the
team. These multiple handoffs can result in
miscommunication and bottlenecks.

Lack of effective methodologies to measure
productivity and quality adds to the challenge,
resulting in expensive mismatches between
demand and capacity, and finger-pointing
among the disciplines. Development teams
expect user requirements to be agreed upon
and finalized when they receive them, which
is not always the case. Rework and frustration
within teams may result, as not all parties
involved will be aligned on the latest require-
ments or clarification of requirements. As
a result of operating in silos, work moves
in lumps through the software-development
life cycle. For example, all use cases are
examined together in the user-acceptance
testing phase, rather than in batches as
they are completed.5 This results in missed
opportunities to perform processes in par-
allel and shorten the time to market.

We have found that for many large, complex
application-development projects, function-
ally organized team structures are counter-
productive. Each function takes ownership
only of its part of the software-development
life cycle instead of delivering working
functionality to the end user. Given the
communication challenge, the small team
of project managers with end-to-end respon
sibility is often too stretched to coordinate
across disciplines.

The cross-functional
approach

In our experience, large, complex software
projects are better served by work cells—cross-
functional teams with end-to-end ownership
of application modules. The role of the project
manager becomes ensuring that cells deliver
their modules, rather than managing commu-
nications and handoffs between functional
teams (Exhibit 2).

When applied well, cross-functional units can
have multiple benefits, including increased
individual and collective accountability,
better communication and coordination,
and shorter iterations.

More accountability. In a work cell, business
analysts, developers, and testers work together
as a tightly knit group and take responsibility
for the whole process—definition of user
requirements, development of code, functional
testing, rework, user-acceptance testing, and
the ultimate delivery of functionality to the cus-
tomer. Such a team structure encourages a
first-time-right ethic by increasing both
individual and collective accountability.

Better communication. Cross-functional
units reduce rework and delays that arise
because of lack of coordination among disci-
plines. The complexity of a mix of onshore
and offshore locations becomes easier to
manage when requirement changes, updates,

5�Use cases are a method for
gathering the functional
requirements of applications.
For more information, see
Michael Huskins, James
Kaplan, and Krish Krish
nakanthan, “Enhancing
the efficiency and effectiveness
of application development,”
McKinsey on Business
Technology, August 2013,
mckinsey.com.

In cross-functional teams, the role of the project manager
becomes ensuring that cells deliver their application modules,
rather than managing communications and handoffs.

13Achieving success in large, complex software projects

and clarifications happen within the unit rather
than between functions. Finding and fixing
defects will also be more efficient: members
of the cross-functional unit will know which
business analyst, developer, or tester to talk
with and will be able to communicate directly.
Team members may feel more empowered to
give one another direct feedback, reducing the
risk of error and the cost of rework. Schedule
changes are communicated in a timely manner
to ensure capacity is available for testing or
rework. Sharing prerelease notes ahead of time
gives enough information on what the testers
are expected to test. A 15-minute daily huddle
can help the unit discuss current work and
align on priorities. In addition, each cross-

functional unit may have daily or alternate-
day planning meetings.

Shorter iterations. Cross-functional units
enable shorter cycles for testing handoffs
because coordination is simpler when each
iteration remains within a small group. As a
result, waiting time is greatly reduced when
testers need developers to provide clarifica-
tions or fix defects.

How an insurer benefited

A large insurer sought to develop and roll
out a global claims platform. Employees

McKinsey On Business Technology 2014 — Workcells

Exhibit 2 of 2

Work cells are organized by modules, with end-to-end
ownership across functions.

Requirements
gathering

Development Quality assurance/
functional testing

User-acceptance
testing

Business analysts Developers Testers Business users

Module 1
Gather
requirements

Build/fix Test/retest Define/test
requirements

Module 2 Gather/clarify
requirements

Build/fix Test/retest Define/test
requirements

Module 3 Gather
requirements

Build/fix Test/retest Define/test
requirements

Exhibit 2

14 McKinsey on Business Technology Number 34, Summer 2014

assigned to the project were located in four
cities across three time zones. The application-
development work was organized by func-
tional discipline (business analysis, develop-
ment, and testing). While there was a common
project plan, it was effectively a stringing
together of three separate project plans, one
for each functional discipline. As a result,
teams communicated inefficiently, which led

to many code defects and much rework, poor
sequencing, and missed milestones because
no one had responsibility for the whole project.

Midway through the project, the insurer
switched to cross-functional teams, giving
each one responsibility for a set of logically
related use cases. As a result, team members
began to focus on delivering end-to-end
functionality rather than just thinking about
their own roles. This approach enabled more
rapid exchange of information, faster require-
ments clarifications, and speedier problem
solving. Code defects fell by 45 percent in
just one month, which reduced the need
for time-consuming rework. The new way
of working resulted in 20 percent quicker
time to market and thus improved frontline
productivity. In addition, business customers
could see the end product ahead of schedule
and suggest necessary changes that enhanced
the customer experience.

. . .
Some large application-development projects
are challenging because of their complexity
and interdependency among work streams.
Cross-functional teams with end-to-end
ownership of application modules can
improve the cost, quality, and speed of these
projects by providing more accountability,
better coordination, and shorter iterations. •

The authors wish to thank Guy Assad, Krish Krishnakanthan, Ming Ruan, and Nihal Sarawgi for their contributions

to this article.

Sriram Chandrasekaran (Sriram_Chandrasekaran@McKinsey.com) is a consultant in McKinsey’s New York office,

Sauri Gudlavalleti (Sauri_Gudlavalleti@McKinsey.com) is a consultant in the Delhi office, and Sanjay Kaniyar

(Sanjay_Kaniyar@McKinsey.com) is an associate principal in the Boston office. Copyright © 2014 McKinsey &

Company. All rights reserved.

15Achieving success in large, complex software projects

Read more about the digital enterprise
in McKinsey on Business Technology

The quest to build a truly digital enterprise—and perhaps win competitive advantage—continues
across geographies and industries at high speed. This issue offers perspectives on two pillars
of such a strategy. In “Accelerating the digitization of business processes” and “How insurers can
master the digital revolution,” we examine how companies can meet customer expectations of a
quick and seamless digital experience. In “Achieving success in large, complex software projects,”
we look at a new approach to application development—an enabler of any successful digital
strategy. Below, we also recommend two articles we published in 2012 and 2013, respectively,
available on mckinsey.com for readers who might have missed them.

2 Feature article

Consumer choice has increased steadily since
Henry Ford’s Model T, when buyers could
pick any color—as long as it was black. After
Ford’s single product came standard specifi­
cations for different consumer segments,
for example, clothes in different sizes and
colors. In the last decade or so, we’ve seen
features that allow each shopper to customize
his or her product or service with a range
of components, for instance, when ordering
a car, computer, or smartphone. Such
configured mass customization is bound to
reach ever­greater levels of sophistication.

There’s more to come. Now individualized
customization appears to be within reach.
This next wave of mass customization—
building a unique product for each customer
(for example, custom suits and shirts made
to fit your body shape)—has been on the
horizon but has proved hard to achieve

profitably at scale. Successes have usually
come from start­ups or from niche plays
by established corporations, and there are
many examples of costly failures.

Profitable mass customization of products
and services—whether they are ones that
are unique for each customer or ones that
consumers can configure extensively to their
needs—requires success in two broad areas.
The first is identifying opportunities for
customization that create value for the
customer and are supported by smooth,
swift, and inexpensive transactions for both
consumers and producers. The second is
achieving a manageable cost structure and
cost level for the producer even as manufac­
turing complexity increases.

We believe the time for widespread, profitable
mass customization may finally have come,

How technology can drive the
next wave of mass customization

Seven technologies are making it easier to tailor products and services

to the wants of individual customers—and still make a profit.

F
ra

n
c
e
sc

o
 B

o
n
g
io

rn
i

Anshuk Gandhi,

Carmen Magar,

and Roger Roberts

20 Feature article

About 20 years ago, software’s use within
organizations was largely confined to big
trans actional systems in the data center.
Now, it underpins nearly every function in
every industry. Software spend has grown
accordingly, jumping from 32 percent of total
corporate IT investment in 1990 to almost
60 percent in 2011.1

The allure is plain. On the front end, software-
enhanced products and services can lead to
entirely new offerings, for example, turning
an ordinary running shoe into one that also
tracks your mileage. And as the surge in
social techno logies shows, software permits
a host of new marketing and communications
channels that consumers have been quick to
embrace. The back-end benefits are equally
compelling. Greater automation, integration,

and standardization can lower cost and boost
performance significantly, while social enter-
prise tools can facilitate collaboration and
provide greater agility.

The strategic as well as operational challenge
is that software is not static. Many have come
to think of it like electricity—something that
can be wired in and mostly forgotten about.2
But software and the processes and applications
it touches are, in fact, constantly changing.

That reality introduces new competitive dynamics.
Managers have to worry about competitors
leap frogging them with ever-faster cycle times,
courtesy of such software-enabled techniques
as rapid prototyping and real-time testing. They
must also be mindful of network effects, since
customers can become accustomed to working

Competing in a digital world:
Four lessons from the software industry

Software is becoming critical for almost every company’s performance. Executives

should ask what they can learn from business models employed by software providers

themselves—and consider the implications for their IT function.

J
o
n
 K

ra
u
se

Hugo Sarrazin and

Johnson Sikes

1 “Private fixed investment
in equipment and software
by type,” table group 5.5.5,
Concepts and Methods
of the US National Income
and Product Accounts, US
Bureau of Economic Analysis,
November 2011.

2 In fact, this is no longer true,
even for electricity, as develop -
ments in smart grids and smart
metering infrastructures are
changing the power industry.

Competing in a digital world: Four lessons
from the software industry
by Hugo Sarrazin and Johnson Sikes

Software is becoming critical for almost every
company’s performance. Executives should
ask what they can learn from business models
employed by software providers themselves—
and consider the implications for their IT function.

How technology can drive the next
wave of mass customization
by Anshuk Gandhi, Carmen Magar,
and Roger Roberts

Seven technologies are making it easier to
tailor products and services to the wants of
individual customers—and still make a profit.

