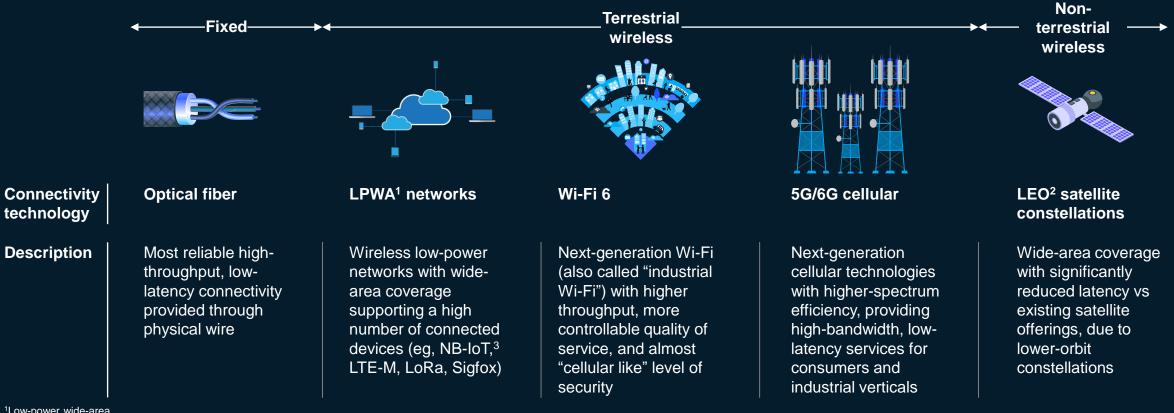
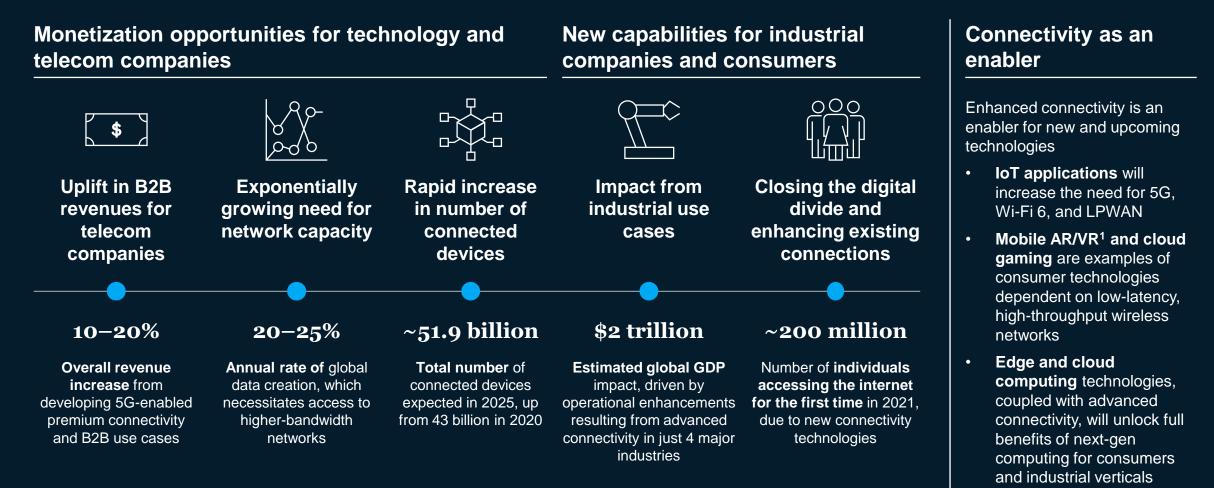


McKinsey Technology Trends Outlook 2022


Advanced connectivity

August 2022

What is the trend about, and what are the most noteworthy technologies?


5G/6G cellular, wireless low-power networks, low-Earth-orbit satellites, and other technologies support a host of digital solutions that can help networks increase geographic coverage, reduce latency, reduce energy consumption, increase data throughput, and increase spectrum efficiency. This has led to higher-quality network access for consumers and unlocked new use cases for industrial players

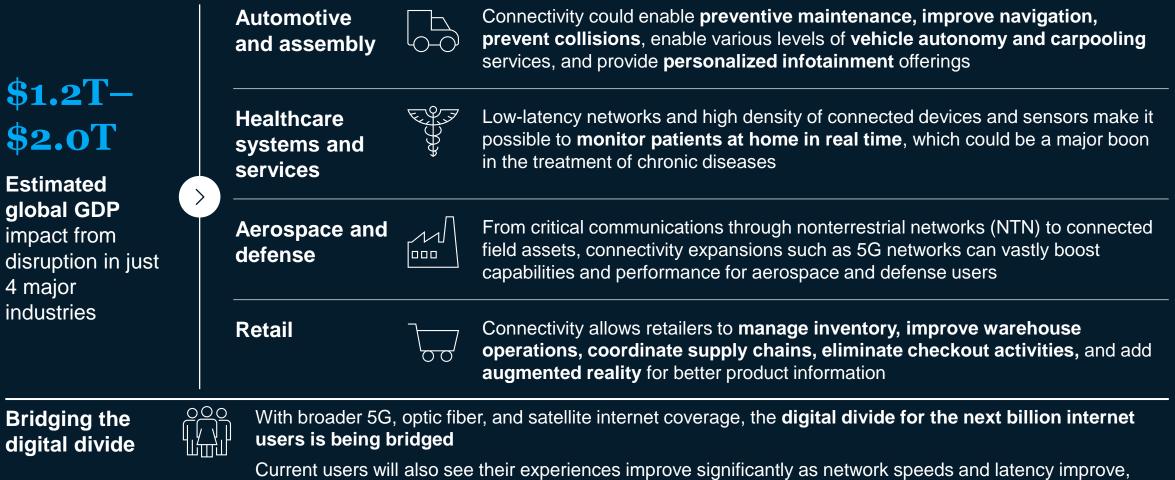
¹Low-power wide-area. ²Low-Earth orbit. ³Narrow-bandwidth Internet of Things.

Why should leaders pay attention?

As advanced connectivity becomes broadly available, industries will find innovative use cases

¹Augmented reality/virtual reality.

Source: DataSphere Forecast, 2020–2025, IDC; "Connected world: An evolution in connectivity beyond the 5G revolution," McKinsey, Feb 2020; Simon Kemp, "Digital 2022: Global Overview Report," Datareportal, Jan 26, 2022; Worldwide Global DataSphere IoT Device and Data Forecast, 2021–2025, IDC


Why are advanced-connectivity technologies interesting, compared with what already exists?

We compared the current generation of advanced connectivity technologies with their predecessors

	Summary	Previous generation	Next/current generation
Optical fiber	Rapid growth has connected millions of people to high-speed internet	Widely used copper had lower throughput and higher cost for an operator	Modern optic fiber brought an exponential increase in throughput , much lower latency , and lower maintenance costs for telecom companies
LPWAN	Standards designed from the ground up aim to optimize for IoT devices	Relatively costly standard cellular connectivity and low-range tech such as Wi-Fi/Bluetooth drove most IoT applications	Purpose-built LPWAN connectivity standards enable more devices, higher energy efficiency , extended coverage , and lower connectivity cost
Wi-Fi 6	Significantly higher industry readiness has been enabled by improvements in security and connection quality	Wi-Fi 5 brought a marked improvement in indoor wireless connectivity and a major improvement in speed over Wi-Fi 4	Wi-Fi 6 improves upon previous standards in speed, range, and security , making it more suitable for industrial applications
5G/6G cellular wireless	Advanced cellular technology standards are replacing 4G networks, bringing new features and access to new spectrum	4G cellular technology with moderate speed provided true mobile broadband access for the first time	5G/6G offers much higher throughput, device density, spectrum efficiency , quality of service , and security guarantees with very low latency for improved user experiences
LEO satellite constella- tions	These satellite constellations ensure that the most remote locations on earth have high- quality connectivity	Satellite connectivity was for military and industrial applications, with limited consumer usage for internet or communication	LEO satellites aspire to reduce the cost of hardware and increase accessibility to satellite internet connectivity by providing enhanced proximity to users

What disruptions could the trend enable?

Advanced connectivity will catalyze the adoption of technologies to create disruptions in many industries

current users will also see their experiences improve significantly as network speeds and latency improenabling use cases previously considered unfeasible

What disruptions could the trend enable? (continued)

Industry affected	Impact from technology trend
Telecommunications	 Introduce new B2C and B2B service offerings, such as improved cellular services for retail customers and private 5G solutions for enterprise customers
Aviation, travel, and logistics	 Track and trace products and provide data to help customers optimize supply chains using LPWA wireless technology
Construction and building materials	 Building Information Modelling (BIM), onsite 3-D printing, and AR applications will all require high-speed, low-latency, expansive connectivity networks.
Information technology and electronics	 Demand for smart sensors and IoT¹-enabled devices will grow as connectivity improves and cost drops
Media and entertainment	 Enable high speed, value-creating entertainment experiences within limited disruptions as new devices (eg, AR/VR devices) enter the market
Metals and mining	 Expand coverage to enable "smart mining" and digitization/automation practices that will enhance productivity and safety
Electric power, natural gas, and utilities	 Implement a smart utility grid with smart meters, sensors, and other cloud devices
Oil and gas	 Leverage advanced connectivity technologies to permit and optimize real-time monitoring of drilling and production activities, as well as digital tools and analytics to offshore operators
¹ Internet of Things.	

Source: McKinsey analysis

What should leaders consider when engaging with the trend?

Advanced connectivity will be a huge catalyst for change as the value chain and ecosystem continue to mature

Benefits

- Enabler: Connectivity is a key enabler of revolutionary capabilities of digital transformations, driving efficiency through automation and enabling technologies reliant on high-quality connectivity such as cloud computing and IoT
- **Experience:** Average consumers' experiences are enhanced with ubiquitous connectivity and significantly higher quality of service, enabling individuals to work remotely, access bandwidth-heavy services, stream higher-quality content, etc
- **Global aspirations:** Advanced connectivity technologies are aspiring to have a global footprint, as countries from the global south and north stand to benefit significantly in the future, even if the rate of adoption is uneven

Risks and uncertainties

- Ecosystem maturity: The ecosystems for evolving connectivity modalities such as LPWA and LEO are maturing, but so far, few players provide solutions and services in markets
- Business viability: Commoditization of connectivity has meant that only a few telecom companies have been able to monetize 5G well enough to get a good ROI; the trajectory of capital expenditures and maintenance costs will also be closely watched
- Availability: Some technologies, such as high-band 5G and LEO, may be limited by the large capital investments required to build out networks with competitive coverage and performance for mainstream use cases

What industries could be most affected by the trend?

Connectivity technologies are relatively mature with several examples of industries successfully using them to create impact in their operations and services

Cellular wireless, optical fiber, and LPWAN technologies are leading catalysts of change in these industries; applications include ubiquitous connectivity for consumers, industrial automation, and IoT applications such as smart meters

Industry affected		Implications from technology trend
(((q))) A	Telecomuni- cations	Telecom companies are using advanced connectivity to introduce new B2C and B2B service offerings, such as improved cellular services for retail customers and private 5G solutions for enterprise customers
	Automotive and assembly	Innovative automotive players of the future will introduce self-driving, connected vehicles packed with features that depend on high-quality network access even in remote locations
		Private 5G, industrial Wi-Fi, and LPWA networks support Industry 4.0 solutions that lift productivity, lower energy consumption, and reduce costs in factories
	Aviation, travel, and logistics	LPWA wireless technology lets logistics providers track and trace products and provide data to help customers optimize supply chains, improving overall operational efficiency
ACCES I	Healthcare	Connectivity will be a major boon in the treatment of chronic diseases, as AI-powered diagnostics can be conducted using data from patients while they are monitored at home using connected medical devices; this will improve patient access to healthcare while improving the overall digitization of healthcare services

Who has successfully created impact with advanced connectivity?

Leading players across industries have already leveraged advanced connectivity to optimize their operations

Volkswagen has implemented 5G private networks in their factory in Dresden; VW replaced wired connections between machinery, and now updates finished cars with over-the-air updates and connects unmanned vehicles with edge-cloud servers

Michelin utilized LPWAN to enable real-time inventory management in 2019; using Sigfox standards, Michelin was able to gain up to a 10% reduction of the on-sea inventory and a 40% increase in estimated time of arrival (ETA) accuracy while reducing inventory ruptures caused by exceptional events like critical weather conditions

Bosch equipped their first factory with a 5G private network in 2020; the network enables a range of advanced use cases such as autonomous transport systems at scale, an automation platform connecting hundreds of end points, and robots cooperating with human factory workers by adjusting movements in real time

Telecommuni-
cationsVerizon deployed 5G private networks in NFL stadiums to enhance spectators' experience; these
networks allow fans to access real-time stats and data in AR and to access a feed of up to 7 camera angles
simultaneously via the 5G multiview offering

What are some topics of debate related to the trend?

Despite relative maturity, advanced connectivity technologies still spark a certain amount of debate regarding their implementation and perceived vs realized benefits

5G Transition

- Can 5G completely replace 4G LTE? What percentage of new networks will have high-band 5G?
 - Private 5G networks are a proven technology, with many players already reaping their benefits
 - Other technologies, such as **IoT and automated guided vehicles**, perform much better when using high-quality networks enabled by private 5G
 - However, shifting from 4G LTE to private 5G may not be cost-effective for all players; this would depend on a player's technological aspirations and planned use cases
- **Extraterrestrial** networking

How will satellite constellations shift the balance of bandwidth from terrestrial connectivity to space-to-Earth connectivity?

- A few players are already **piloting internet services**; there are signs that consumer devices with LEO connectivity are on the horizon
- However, due to high capital expenditures and user costs, the business model and pricing will be a challenge for scaling up networks, nor can LEO connectivity fully serve as a substitute for terrestrial networks for all use cases that rely on cost-efficiency, energy consumption, or overall performance

Choosing LPWA standards

Will certain LPWA protocols emerge as the standards for particular industries? Or will 5G outcompete LPWA networks for IoT applications?

- Depending on availability of traditional LTE networks, a player might choose between licensed or unlicensed cellular LPWA standards; this choice may also be critical when dealing with stationary and mobile devices
- LPWA standards vary in terms of **bandwidth**, cost, power consumption, range and other features; depending on the final use case for the player, some standards might be more appropriate than others

Additional resources

Knowledge center

McKinsey Center for Advanced Connectivity

Related reading

Connected world: An evolution in connectivity beyond the 5G revolution

Interview: Laying the foundation to accelerate the enterprise IoT journey

Unlocking the value of 5G in the B2C marketplace

Reliably connecting the workforce of the future (which is now)

Breaking through the hype: The real-world benefits of 5G connectivity

How tapping connectivity in oil and gas can fuel higher performance

Agriculture's connected future: How technology can yield new growth

How our latest work helps leaders get ready for the 5G revolution