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The added risk brought on by the complexity of machine-learning models can be  
mitigated by making well-targeted modifications to existing validation frameworks.
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Machine learning and artificial intelligence are set to 
transform the banking industry, using vast amounts 
of data to build models that improve decision making, 
tailor services, and improve risk management. 
According to the McKinsey Global Institute, this 
could generate value of more than $250 billion in the 
banking industry.1

But there is a downside, since machine-learning 
models amplify some elements of model risk. 
And although many banks, particularly those 
operating in jurisdictions with stringent regulatory 
requirements, have validation frameworks and 
practices in place to assess and mitigate the risks 
associated with traditional models, these are often 
insufficient to deal with the risks associated with 
machine-learning models. 

Conscious of the problem, many banks are 
proceeding cautiously, restricting the use of 
machine-learning models to low-risk applications, 
such as digital marketing. Their caution is 
understandable given the potential financial, 
reputational, and regulatory risks. Banks could, 
for example, find themselves in violation of 
antidiscrimination laws, and incur significant 
fines–a concern that pushed one bank to ban its 
HR department from using a machine-learning 
résumé screener. A better approach, however,  
and ultimately the only sustainable one if banks 
are to reap the full benefits of machine-learning 
models, is to enhance model-risk management.

Regulators have not issued specific instructions 
on how to do this. In the United States, they have 
stipulated that banks are responsible for ensuring 
that risks associated with machine-learning models 
are appropriately managed, while stating that 
existing regulatory guidelines, such as the Federal 
Reserve’s “Guidance on Model Risk Management” 
(SR11-7), are broad enough to serve as a guide.2 

Enhancing model-risk management to address the 
risks of machine-learning models will require policy 
decisions on what to include in a model inventory,  
as well as determining risk appetite, risk tiering, roles 
and responsibilities, and model life-cycle controls, 
not to mention the associated model-validation 
practices. The good news is that many banks will 
not need entirely new model-validation frameworks. 
Existing ones can be fitted for purpose with some 
well-targeted enhancements.

New risks, new policy choices, new practices

There is no shortage of news headlines revealing 
the unintended consequences of new machine-
learning models. Algorithms that created a 
negative feedback loop were blamed for the “flash 
crash” of the British pound by 6 percent in 2016,  
for example, and it was reported that a self-
driving car tragically failed to properly identify a 
pedestrian walking her bicycle across the street. 

The cause of the risks that materialized in these 
machine-learning models is the same as the cause 
of the amplified risks that exist in all machine-
learning models, whatever the industry and 
application: increased model complexity. Machine-
learning models typically act on vastly larger data 
sets, including unstructured data such as natural 
language, images, and speech. The algorithms are 
typically far more complex than their statistical 
counterparts and often require design decisions 
to be made before the training process begins. And 
machine-learning models are built using new 
software packages and computing infrastructure 
that require more specialized skills.

The response to such complexity does not have 
to be overly complex, however. If properly 
understood, the risks associated with machine-
learning models can be managed within banks’ 
existing model-validation frameworks, as the 
exhibit below illustrates. 
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Highlighted in the exhibit are the modifications made 
to the validation framework and practices employed 
by Risk Dynamics, McKinsey’s model-validation 
arm. This framework, which is fully consistent with 
SR11-7 regulations and has been used to validate 
thousands of traditional models in many different 
fields of banking, examines eight risk-management 
dimensions covering a total of 25 risk elements. By 
modifying 12 of the elements and adding only six new 
ones, institutions can ensure that the specific risks 
associated with machine learning are addressed.

The six new elements

The six new elements—interpretability, bias, feature 
engineering, hyperparameters, production readiness, 
and dynamic model calibration—represent the most 
substantive changes to the framework.

Interpretability

Machine-learning models have a reputation of 
being “black boxes.” Depending on the model’s 
architecture, the results it generates can be hard to 
understand or explain. One bank worked for months 
on a machine-learning product-recommendation 
engine designed to help relationship managers cross- 
sell. But because the managers could not explain 
the rationale behind the model’s recommendations, 
they disregarded them. They did not trust the model, 
which in this situation meant wasted effort and 
perhaps wasted opportunity. In other situations, 
acting upon (rather than ignoring) a model’s less-
than-transparent recommendations could have 
serious adverse consequences.

The degree of interpretability required is a policy 
decision for banks to make based on their risk 
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appetite. They may choose to hold all machine-
learning models to the same high standard of 
interpretability or to differentiate according  
to the model’s risk. In the United States, models  
that determine whether to grant credit to 
applicants are covered by fair-lending laws. The 
models therefore must be able to produce clear 
reason codes for a refusal. On the other hand, 
banks might well decide that a machine-learning 
model’s recommendations to place a product 
advertisement on the mobile app of a given 
customer poses so little risk to the bank that 
understanding the model’s reasons for doing so  
is not important.

Validators need also to ensure that models comply 
with the chosen policy. Fortunately, despite the 
black-box reputation of machine-learning models, 
significant progress has been made in recent years 
to help ensure their results are interpretable.  
A range of approaches can be used, based on the 
model class: 

 �  Linear and monotonic models (for example, 
linear-regression models): linear coefficients 
help reveal the dependence of a result on  
the output.

 �  Nonlinear and monotonic models, (for example, 
gradient-boosting models with monotonic 
constraint): restricting inputs so they have 
either a rising or falling relationship globally 
with the dependent variable simplifies the 
attribution of inputs to a prediction.

 �  Nonlinear and nonmonotonic (for example, 
unconstrained deep-learning models): 
methodologies such as local interpretable 
model-agnostic explanations or Shapley  
values help ensure local interpretability.

Bias

A model can be influenced by four main types of bias: 
sample, measurement, and algorithm bias, and bias 
against groups or classes of people. The latter two 
types, algorithmic bias and bias against people, can 
be amplified in machine-learning models. 

For example, the random-forest algorithm tends 
to favor inputs with more distinct values, a bias 
that elevates the risk of poor decisions. One 
bank developed a random-forest model to assess 
potential money-laundering activity and found 
that the model favored fields with a large number  
of categorical values, such as occupation, when 
fields with fewer categories, such as country, were 
better able to predict the risk of money laundering. 

To address algorithmic bias, model-validation 
processes should be updated to ensure appropriate 
algorithms are selected in any given context. In 
some cases, such as random-forest feature selection, 
there are technical solutions. Another approach  
is to develop “challenger” models, using alternative 
algorithms to benchmark performance. 

To address bias against groups or classes of people, 
banks must first decide what constitutes fairness. 
Four definitions are commonly used, though which 
to choose may depend on the model’s use: 

 �  Demographic blindness: decisions are made 
using a limited set of features that are highly 
uncorrelated with protected classes, that is, 
groups of people protected by laws or policies.

 �  Demographic parity: outcomes are 
proportionally equal for all protected classes. 

 �  Equal opportunity: true-positive rates are equal 
for each protected class. 
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 �  Equal odds: true-positive and false-positive 
rates are equal for each protected class.

Validators then need to ascertain whether developers 
have taken the necessary steps to ensure fairness. 
Models can be tested for fairness and, if necessary, 
corrected at each stage of the model-development 
process, from the design phase through to 
performance monitoring. 

Feature engineering

Feature engineering is often much more complex in 
the development of machine-learning models than 
in traditional models. There are three reasons why. 
First, machine-learning models can incorporate 
a significantly larger number of inputs. Second, 
unstructured data sources such as natural language 
require feature engineering as a preprocessing 
step before the training process can begin. Third, 
increasing numbers of commercial machine-
learning packages now offer so-called AutoML, 
which generates large numbers of complex features 
to test many transformations of the data. Models 
produced using these features run the risk of being 
unnecessarily complex, contributing to overfitting. 
For example, one institution built a model using an 
AutoML platform and found that specific sequences 
of letters in a product application were predictive of 
fraud. This was a completely spurious result caused 
by the algorithm’s maximizing the model’s out-of-
sample performance. 

In feature engineering, banks have to make a policy 
decision to mitigate risk. They have to determine  
the level of support required to establish the 
conceptual soundness of each feature. The policy 
may vary according to the model’s application. For 
example, a highly regulated credit-decision model 
might require that every individual feature in  
the model be assessed. For lower-risk models, banks 
might choose to review the feature-engineering 
process only: for example, the processes for data 
transformation and feature exclusion.

Validators should then ensure that features and/
or the feature-engineering process are consistent 
with the chosen policy. If each feature is to be 
tested, three considerations are generally needed: 
the mathematical transformation of model inputs, 
the decision criteria for feature selection, and the 
business rationale. For instance, a bank might 
decide that there is a good business case for using 
debt-to-income ratios as a feature in a credit model 
but not frequency of ATM usage, as this might 
penalize customers for using an advertised service.

Hyperparameters

Many of the parameters of machine-learning 
models, such as the depth of trees in a random-
forest model or the number of layers in a deep 
neural network, must be defined before the training 
process can begin. In other words, their values are 
not derived from the available data. Rules of thumb, 

An institution built a model using an AutoML platform and found  
that specific sequences of letters in a product application were 
predictive of fraud—a spurious result.
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parameters used to solve other problems, or even 
trial and error are common substitutes. Decisions 
regarding these kinds of parameters, known as 
hyperparameters, are often more complex than 
analogous decisions in statistical modeling. Not 
surprisingly, a model’s performance and its stability 
can be sensitive to the hyperparameters selected. 
For example, banks are increasingly using binary 
classifiers such as support-vector machines in 
combination with natural-language processing to 
help identify potential conduct issues in complaints. 
The performance of these models and the ability 
to generalize can be very sensitive to the selected 
kernel function.

Validators should ensure that hyperparameters are 
chosen as soundly as possible. For some quantitative 
inputs, as opposed to qualitative inputs, a search 
algorithm can be used to map the parameter space 
and identify optimal ranges. In other cases, the best 
approach to selecting hyperparameters is to combine 
expert judgment and, where possible, the latest 
industry practices.  

Production readiness

Traditional models are often coded as rules in 
production systems. Machine-learning models, 
however, are algorithmic, and therefore require 
more computation. This requirement is commonly 
overlooked in the model-development process. 
Developers build complex predictive models only to 
discover that the bank’s production systems cannot 
support them. One US bank spent considerable 
resources building a deep learning–based model to 
predict transaction fraud, only to discover it did not 
meet required latency standards. 

Validators already assess a range of model risks 
associated with implementation. However, for 

machine learning, they will need to expand the 
scope of this assessment. They will need to estimate 
the volume of data that will flow through the model, 
assessing the production-system architecture 
(for example, graphics-processing units for deep 
learning), and the runtime required. 

Dynamic model calibration 

Some classes of machine-learning models modify 
their parameters dynamically to reflect emerging 
patterns in the data. This replaces the traditional 
approach of periodic manual review and model 
refresh. Examples include reinforcement-learning 
algorithms or Bayesian methods. The risk is that 
without sufficient controls, an overemphasis on 
short-term patterns in the data could harm the 
model’s performance over time. 

Banks therefore need to decide when to allow 
dynamic recalibration. They might conclude that 
with the right controls in place, it is suitable  
for some applications, such as algorithmic trading. 
For others, such as credit decisions, they might 
require clear proof that dynamic recalibration 
outperforms static models. 

With the policy set, validators can evaluate whether 
dynamic recalibration is appropriate given the 
intended use of the model, develop a monitoring 
plan, and ensure that appropriate controls are 
in place to identify and mitigate risks that might 
emerge. These might include thresholds that catch 
material shifts in a model’s health, such as out-of-
sample performance measures, and guardrails such 
as exposure limits or other, predefined values that 
trigger a manual review.
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Banks will need to proceed gradually. The first 
step is to make sure model inventories include 
all machine learning–based models in use. You 
may be surprised to learn how many there are. 
One bank’s model risk-management function 
was certain the organization was not yet using 
machine-learning models, until it discovered that 
its recently established innovation function had 
been busy developing machine-learning models  
for fraud and cybersecurity. 

From here, validation policies and practices can 
be modified to address machine-learning-model 
risks, though initially for a restricted number 
of model classes. This helps build experience 
while testing and refining the new policies and 
practices. Considerable time will be needed to 
monitor a model’s performance and finely tune the 
new practices. But over time banks will be able to 
apply them to the full range of approved machine-
learning models, helping companies mitigate  
risk and gain the confidence to start harnessing 
the full power of machine learning.  
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1   For the purposes of this article machine learning is broadly 
defined to include algorithms that learn from data without 
being explicitly programmed, including, for example, random 
forests, boosted decision trees, support-vector machines, deep 
learning, and reinforcement learning. The definition includes both 
supervised and unsupervised algorithms. For a full primer on the 
applications of artificial intelligence, we refer the reader to https://
www.mckinsey.com/business-functions/mckinsey-analytics/
our-insights/an-executives-guide-to-ai.

2  Lael Brainard, What are we learning about artificial intelligence  
in financial services?, Fintech and the New Financial Landscape, 
Philadelphia, PA, November 13, 2018, federalreserve.gov.


