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Making data analytics 
work for you—instead  
of the other way around 
Does your data have a purpose? If not, you’re spinning your wheels. 
Here’s how to discover one and then translate it into action.

by Helen Mayhew, Tamim Saleh, and Simon Williams

The data-analytics revolution now under way has the potential to transform 
how companies organize, operate, manage talent, and create value. That’s 
starting to happen in a few companies—typically ones that are reaping major 
rewards from their data—but it’s far from the norm. There’s a simple reason: 
CEOs and other top executives, the only people who can drive the broader 
business changes needed to fully exploit advanced analytics, tend to avoid 
getting dragged into the esoteric “weeds.” On one level, this is understandable. 
The complexity of the methodologies, the increasing importance of machine 
learning, and the sheer scale of the data sets make it tempting for senior 
leaders to “leave it to the experts.” 

But that’s also a mistake. Advanced data analytics is a quintessential business 
matter. That means the CEO and other top executives must be able to clearly 
articulate its purpose and then translate it into action—not just in an analytics 
department, but throughout the organization where the insights will be used. 

This article describes eight critical elements contributing to clarity of purpose 
and an ability to act. We’re convinced that leaders with strong intuition about 
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both don’t just become better equipped to “kick the tires” on their analytics 
efforts. They can also more capably address many of the critical and com- 
plementary top-management challenges facing them: the need to ground 
even the highest analytical aspirations in traditional business principles, the 
importance of deploying a range of tools and employing the right personnel, 
and the necessity of applying hard metrics and asking hard questions. (For more  
on these, see “Straight talk about big data,” on page 42.1) All that, in turn, 
boosts the odds of improving corporate performance through analytics. 

After all, performance—not pristine data sets, interesting patterns, or killer 
algorithms—is ultimately the point. Advanced data analytics is a means  
to an end. It’s a discriminating tool to identify, and then implement, a value-
driving answer. And you’re much likelier to land on a meaningful one if  
you’re clear on the purpose of your data (which we address in this article’s 
first four principles) and the uses you’ll be putting your data to (our focus in  
the next four). That answer will of course look different in different companies,  
industries, and geographies, whose relative sophistication with advanced 
data analytics is all over the map. Whatever your starting point, though, the 
insights unleashed by analytics should be at the core of your organization’s 
approach to define and improve performance continually as competitive 
dynamics evolve. Otherwise, you’re not making advanced analytics work  
for you.

‘PURPOSE-DRIVEN’ DATA
“Better performance” will mean different things to different companies. And 
it will mean that different types of data should be isolated, aggregated,  
and analyzed depending upon the specific use case. Sometimes, data points 
are hard to find, and, certainly, not all data points are equal. But it’s the  
data points that help meet your specific purpose that have the most value. 

Ask the right questions
The precise question your organization should ask depends on your best-
informed priorities. Clarity is essential. Examples of good questions include 

“how can we reduce costs?” or “how can we increase revenues?” Even better 
are questions that drill further down: “How can we improve the productivity 
of each member of our team?” “How can we improve the quality of outcomes 
for patients?” “How can we radically speed our time to market for product 

1 �For more on the context and challenges of harnessing insights from more data and on using new methods, tools, 
and skills to do so, see “Is big data still a thing?,” blog entry by Matt Turck, February 1, 2016, mattturck.com; 
David Court, “Getting big impact from big data,” McKinsey Quarterly, January 2015, McKinsey.com; and Brad 
Brown, David Court, and Paul Willmott, “Mobilizing your C-suite for big-data analytics,” McKinsey Quarterly, 
November 2013, McKinsey.com. 
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development?” Think about how you can align important functions and 
domains with your most important use cases. Iterate through to actual busi- 
ness examples, and probe to where the value lies. In the real world of hard 
constraints on funds and time, analytic exercises rarely pay off for vaguer 
questions such as “what patterns do the data points show?” 

One large financial company erred by embarking on just that sort of open-
ended exercise: it sought to collect as much data as possible and then see what  
turned up. When findings emerged that were marginally interesting but 
monetarily insignificant, the team refocused. With strong C-suite support, 
it first defined a clear purpose statement aimed at reducing time in product 
development and then assigned a specific unit of measure to that purpose, 
focused on the rate of customer adoption. A sharper focus helped the company  
introduce successful products for two market segments. Similarly, another 
organization we know plunged into data analytics by first creating a “data 
lake.” It spent an inordinate amount of time (years, in fact) to make the data 
pristine but invested hardly any thought in determining what the use cases 
should be. Management has since begun to clarify its most pressing issues. 
But the world is rarely patient. 

Had these organizations put the question horse before the data-collection 
cart, they surely would have achieved an impact sooner, even if only portions  
of the data were ready to be mined. For example, a prominent automotive 
company focused immediately on the foundational question of how to improve  
its profits. It then bore down to recognize that the greatest opportunity 
would be to decrease the development time (and with it the costs) incurred 
in aligning its design and engineering functions. Once the company had 
identified that key focus point, it proceeded to unlock deep insights from ten 
years of R&D history—which resulted in remarkably improved develop- 
ment times and, in turn, higher profits. 

In the real world of hard constraints  
on funds and time, analytic exercises rarely 
pay off for vaguer questions such as  

“what patterns do the data points show?”



 4

Think really small . . . and very big
The smallest edge can make the biggest difference. Consider the remarkable 
photograph below from the 1896 Olympics, taken at the starting line of the 
100-meter dash. Only one of the runners, Thomas Burke, crouched in the now- 
standard four-point stance. The race began in the next moment, and 12 seconds  
later Burke took the gold; the time saved by his stance helped him do it.  
Today, sprinters start in this way as a matter of course—a good analogy for 
the business world, where rivals adopt best practices rapidly and competi- 
tive advantages are difficult to sustain.

The good news is that intelligent players can still improve their performance 
and spurt back into the lead. Easy fixes are unlikely, but companies can identify  
small points of difference to amplify and exploit. The impact of “big data” 
analytics is often manifested by thousands—or more—of incrementally small  
improvements. If an organization can atomize a single process into its 
smallest parts and implement advances where possible, the payoffs can be  
profound. And if an organization can systematically combine small improve- 
ments across bigger, multiple processes, the payoff can be exponential. 

The variety of stances among runners in the 100-meter sprint at the first modern Olympic Games, held in 
Athens in 1896, is surprising to the modern viewer. Thomas Burke (second from left) is the only runner in the 

crouched stance—considered best practice today—an advantage that helped him win one of his two gold 
medals at the Games.
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Just about everything businesses do can be broken down into component 
parts. GE embeds sensors in its aircraft engines to track each part of their 
performance in real time, allowing for quicker adjustments and greatly 
reducing maintenance downtime. But if that sounds like the frontier of high 
tech (and it is), consider consumer packaged goods. We know a leading CPG 
company that sought to increase margins on one of its well-known breakfast 
brands. It deconstructed the entire manufacturing process into sequential 
increments and then, with advanced analytics, scrutinized each of them  
to see where it could unlock value. In this case, the answer was found in  
the oven: adjusting the baking temperature by a tiny fraction not only made 
the product taste better but also made production less expensive. The  
proof was in the eating—and in an improved P&L. 

When a series of processes can be decoupled, analyzed, and resynched 
together in a system that is more universe than atom, the results can be even  
more powerful. A large steel manufacturer used various analytics tech- 
niques to study critical stages of its business model, including demand planning  
and forecasting, procurement, and inventory management. In each process, 
it isolated critical value drivers and scaled back or eliminated previously 
undiscovered inefficiencies, for savings of about 5 to 10 percent. Those gains,  
which rested on hundreds of small improvements made possible by data 
analytics, proliferated when the manufacturer was able to tie its processes 
together and transmit information across each stage in near real time.  
By rationalizing an end-to-end system linking demand planning all the way  
through inventory management, the manufacturer realized savings 
approaching 50 percent—hundreds of millions of dollars in all. 

Embrace taboos 
Beware the phrase “garbage in, garbage out”; the mantra has become so 
embedded in business thinking that it sometimes prevents insights from 
coming to light. In reality, useful data points come in different shapes  
and sizes—and are often latent within the organization, in the form of free-
text maintenance reports or PowerPoint presentations, among multiple 
examples. Too frequently, however, quantitative teams disregard inputs 
because the quality is poor, inconsistent, or dated and dismiss imperfect 
information because it doesn’t feel like “data.” 

But we can achieve sharper conclusions if we make use of fuzzier stuff. In 
day-to-day life—when one is not creating, reading, or responding to an Excel 
model—even the most hard-core “quant” processes a great deal of qualitative 
information, much of it soft and seemingly taboo for data analytics—in a 
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nonbinary way. We understand that there are very few sure things; we weigh 
probabilities, contemplate upsides, and take subtle hints into account. Think 
about approaching a supermarket queue, for example. Do you always go to 
register four? Or do you notice that, today, one worker seems more efficient, 
one customer seems to be holding cash instead of a credit card, one cashier 
does not have an assistant to help with bagging, and one shopping cart has  
items that will need to be weighed and wrapped separately? All this is soft 

“intel,” to be sure, and some of the data points are stronger than others. But  
you’d probably consider each of them and more when you decided where to 
wheel your cart. Just because line four moved fastest the last few times doesn’t  
mean it will move fastest today. 

In fact, while hard and historical data points are valuable, they have their 
limits. One company we know experienced them after instituting a robust 
investment-approval process. Understandably mindful of squandering 
capital resources, management insisted that it would finance no new products  
without waiting for historical, provable information to support a projected 
ROI. Unfortunately, this rigor resulted in overly long launch periods—so long  
that the company kept mistiming the market. It was only after relaxing 
the data constraints to include softer inputs such as industry forecasts, 
predictions from product experts, and social-media commentary that the 
company was able to get a more accurate feel for current market conditions 
and time its product launches accordingly.

Of course, Twitter feeds are not the same as telematics. But just because 
information may be incomplete, based on conjecture, or notably biased  
does not mean that it should be treated as “garbage.” Soft information does 
have value. Sometimes, it may even be essential, especially when people  
try to “connect the dots” between more exact inputs or make a best guess for 
the emerging future.

To optimize available information in an intelligent, nuanced way, companies 
should strive to build a strong data provenance model that identifies the 
source of every input and scores its reliability, which may improve or degrade 
over time. Recording the quality of data—and the methodologies used to 
determine it—is not only a matter of transparency but also a form of risk 
management. All companies compete under uncertainty, and sometimes 
the data underlying a key decision may be less certain than one would like. A 
well-constructed provenance model can stress-test the confidence for a  
go/no-go decision and help management decide when to invest in improving 
a critical data set. 
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Connect the dots
Insights often live at the boundaries. Just as considering soft data can reveal  
new insights, combining one’s sources of information can make those 
insights sharper still. Too often, organizations drill down on a single data set 
in isolation but fail to consider what different data sets convey in conjunc- 
tion. For example, HR may have thorough employee-performance data; 
operations, comprehensive information about specific assets; and finance, 
pages of backup behind a P&L. Examining each cache of information 
carefully is certainly useful. But additional untapped value may be nestled in 
the gullies among separate data sets. 

One industrial company provides an instructive example. The core business 
used a state-of-the-art machine that could undertake multiple processes.  
It also cost millions of dollars per unit, and the company had bought hundreds  
of them—an investment of billions. The machines provided best-in-class 
performance data, and the company could, and did, measure how each unit  
functioned over time. It would not be a stretch to say that keeping the 
machines up and running was critical to the company’s success. 

Even so, the machines required longer and more costly repairs than manage- 
ment had expected, and every hour of downtime affected the bottom line. 
Although a very capable analytics team embedded in operations sifted through  
the asset data meticulously, it could not find a credible cause for the break- 
downs. Then, when the performance results were considered in conjunction 
with information provided by HR, the reason for the subpar output became 
clear: machines were missing their scheduled maintenance checks because the  
personnel responsible were absent at critical times. Payment incentives, 
not equipment specifications, were the real root cause. A simple fix solved 
the problem, but it became apparent only when different data sets were 
examined together.

FROM OUTPUTS TO ACTION 
One visual that comes to mind in the case of the preceding industrial company  
is that of a Venn Diagram: when you look at 2 data sets side by side, a key 
insight becomes clear through the overlap. And when you consider 50 data sets,  
the insights are even more powerful—if the quest for diverse data doesn’t  
create overwhelming complexity that actually inhibits the use of analytics. 
To avoid this problem, leaders should push their organizations to take a 
multifaceted approach in analyzing data. If analyses are run in silos, if the 
outputs do not work under real-world conditions, or, perhaps worst of all,  
if the conclusions would work but sit unused, the analytics exercise has failed.
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Exhibit 

Best-in-class organizations continually test their assumptions, processing 
new information more accurately and reacting to situations more quickly. 
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1 Observe, orient, decide, and act—a strategic decision-making model developed by US Air Force colonel John R. Boyd.
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Run loops, not lines 
Data analytics needs a purpose and a plan. But as the saying goes, “no 
battle plan ever survives contact with the enemy.” To that, we’d add another 
military insight—the OODA loop, first conceived by US Air Force colonel 
John Boyd: the decision cycle of observe, orient, decide, and act. Victory, 
Boyd posited, often resulted from the way decisions are made; the side that 
reacts to situations more quickly and processes new information more 
accurately should prevail. The decision process, in other words, is a loop or—
more correctly—a dynamic series of loops (exhibit).

Best-in-class organizations adopt this approach to their competitive advantage.  
Google, for one, insistently makes data-focused decisions, builds consumer 
feedback into solutions, and rapidly iterates products that people not only use  
but love. A loops-not-lines approach works just as well outside of Silicon 
Valley. We know of a global pharmaceutical company, for instance, that tracks  
and monitors its data to identify key patterns, moves rapidly to intervene 
when data points suggest that a process may move off track, and refines its 
feedback loop to speed new medications through trials. And a consumer-
electronics OEM moved quickly from collecting data to “doing the math” 
with an iterative, hypothesis-driven modeling cycle. It first created an 
interim data architecture, building three “insights factories” that could gen- 
erate actionable recommendations for its highest-priority use cases, and 
then incorporated feedback in parallel. All of this enabled its early pilots to 
deliver quick, largely self-funding results.

Digitized data points are now speeding up feedback cycles. By using advanced  
algorithms and machine learning that improves with the analysis of every 
new input, organizations can run loops that are faster and better. But while 
machine learning very much has its place in any analytics tool kit, it is not 
the only tool to use, nor do we expect it to supplant all other analyses. We’ve 
mentioned circular Venn Diagrams; people more partial to three-sided 
shapes might prefer the term “triangulate.” But the concept is essentially the 
same: to arrive at a more robust answer, use a variety of analytics techniques 
and combine them in different ways. 

In our experience, even organizations that have built state-of-the-art machine- 
learning algorithms and use automated looping will benefit from comparing 
their results against a humble univariate or multivariate analysis. The 
best loops, in fact, involve people and machines. A dynamic, multipronged 
decision process will outperform any single algorithm—no matter how 
advanced—by testing, iterating, and monitoring the way the quality of 



 10

data improves or degrades; incorporating new data points as they become 
available; and making it possible to respond intelligently as events unfold. 

Make your output usable—and beautiful
While the best algorithms can work wonders, they can’t speak for themselves 
in boardrooms. And data scientists too often fall short in articulating what 
they’ve done. That’s hardly surprising; companies hiring for technical roles 
rightly prioritize quantitative expertise over presentation skills. But mind 
the gap, or face the consequences. One world-class manufacturer we know 
employed a team that developed a brilliant algorithm for the options pricing 
of R&D projects. The data points were meticulously parsed, the analyses 
were intelligent and robust, and the answers were essentially correct. 
But the organization’s decision makers found the end product somewhat 
complicated and didn’t use it.

We’re all human after all, and appearances matter. That’s why a beautiful 
interface will get you a longer look than a detailed computation with an 
uneven personality. That’s also why the elegant, intuitive usability of products  
like the iPhone or the Nest thermostat is making its way into the enterprise. 
Analytics should be consumable, and best-in-class organizations now include  
designers on their core analytics teams. We’ve found that workers through- 
out an organization will respond better to interfaces that make key findings 
clear and that draw users in.

Build a multiskilled team 
Drawing your users in—and tapping the capabilities of different individuals 
across your organization to do so—is essential. Analytics is a team sport. 
Decisions about which analyses to employ, what data sources to mine, and 
how to present the findings are matters of human judgment. 

Assembling a great team is a bit like creating a gourmet delight—you need  
a mix of fine ingredients and a dash of passion. Key team members include 
data scientists, who help develop and apply complex analytical methods; 
engineers with skills in areas such as microservices, data integration, and 
distributed computing; cloud and data architects to provide technical  
and systemwide insights; and user-interface developers and creative designers  
to ensure that products are visually beautiful and intuitively useful. You  
also need “translators”—men and women who connect the disciplines of IT 
and data analytics with business decisions and management.
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In our experience—and, we expect, in yours as well—the demand for people 
with the necessary capabilities decidedly outstrips the supply. We’ve also 
seen that simply throwing money at the problem by paying a premium for a  
cadre of new employees typically doesn’t work. What does is a combination:  
a few strategic hires, generally more senior people to help lead an analytics 
group; in some cases, strategic acquisitions or partnerships with small data-
analytics service firms; and, especially, recruiting and reskilling current 
employees with quantitative backgrounds to join in-house analytics teams. 

We’re familiar with several financial institutions and a large industrial company  
that pursued some version of these paths to build best-in-class advanced 
data-analytics groups. A key element of each organization’s success was under- 
standing both the limits that any one individual can be expected to contribute  
and the potential that an engaged team with complementary talents can 
collectively achieve. On occasion, one can find “rainbow unicorn” employees 
who embody most or all of the needed capabilities. It’s a better bet, though, 
to build a collaborative team comprising people who collectively have all the 
necessary skills. 

That starts, of course, with people at the “point of the spear”—those who 
actively parse through the data points and conduct the hard analytics. Over 
time, however, we expect that organizations will move to a model in which 
people across functions use analytics as part of their daily activities. Already, 
the characteristics of promising data-minded employees are not hard to see: 
they are curious thinkers who can focus on detail, get energized by ambiguity, 
display openness to diverse opinions and a willingness to iterate together to 
produce insights that make sense, and are committed to real-world outcomes.  
That last point is critical because your company is not supposed to be 
running some cool science experiment (however cool the analytics may be) 
in isolation. You and your employees are striving to discover practicable 
insights—and to ensure that the insights are used. 

Make adoption your deliverable 
Culture makes adoption possible. And from the moment your organization 
embarks on its analytics journey, it should be clear to everyone that math, data, 
and even design are not enough: the real power comes from adoption. An 
algorithm should not be a point solution—companies must embed analytics 
in the operating models of real-world processes and day-to-day work flows.  
Bill Klem, the legendary baseball umpire, famously said, “It ain’t nothin’ until  
I call it.” Data analytics ain’t nothin’ until you use it. 
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We’ve seen too many unfortunate instances that serve as cautionary tales—
from detailed (and expensive) seismology forecasts that team foremen 
didn’t use to brilliant (and amazingly accurate) flight-system indicators that 
airplane pilots ignored. In one particularly striking case, a company we  
know had seemingly pulled everything together: it had a clearly defined mission  
to increase top-line growth, robust data sources intelligently weighted and 
mined, stellar analytics, and insightful conclusions on cross-selling oppor- 
tunities. There was even an elegant interface in the form of pop-ups that 
would appear on the screen of call-center representatives, automatically 
triggered by voice-recognition software, to prompt certain products, based 
on what the customer was saying in real time. Utterly brilliant—except the 
representatives kept closing the pop-up windows and ignoring the prompts. 
Their pay depended more on getting through calls quickly and less on the 
number and type of products they sold. 

When everyone pulls together, though, and incentives are aligned, the results 
can be remarkable. For example, one aerospace firm needed to evaluate a  
range of R&D options for its next-generation products but faced major tech- 
nological, market, and regulatory challenges that made any outcome uncertain.  
Some technology choices seemed to offer safer bets in light of historical 
results, and other, high-potential opportunities appeared to be emerging but 
were as yet unproved. Coupled with an industry trajectory that appeared  
to be shifting from a product- to service-centric model, the range of potential 
paths and complex “pros” and “cons” required a series of dynamic—and, of 
course, accurate—decisions. 

By framing the right questions, stress-testing the options, and, not least, 
communicating the trade-offs with an elegant, interactive visual model 
that design skills made beautiful and usable, the organization discovered 
that increasing investment along one R&D path would actually keep three 
technology options open for a longer period. This bought the company 
enough time to see which way the technology would evolve and avoided the 
worst-case outcome of being locked into a very expensive, and very wrong, 
choice. One executive likened the resulting flexibility to “the choice of 
betting on a horse at the beginning of the race or, for a premium, being able  
to bet on a horse halfway through the race.” 

It’s not a coincidence that this happy ending concluded as the initiative  
had begun: with senior management’s engagement. In our experience, the 
best day-one indicator for a successful data-analytics program is not  
the quality of data at hand, or even the skill-level of personnel in house, but 
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the commitment of company leadership. It takes a C-suite perspective to 
help identify key business questions, foster collaboration across functions, 
align incentives, and insist that insights be used. Advanced data analytics  
is wonderful, but your organization should not be working merely to put an  
advanced-analytics initiative in place. The very point, after all, is to put 
analytics to work for you.


