
August 2022

McKinsey
Technology Trends
Outlook 2022

Next-generation

software development

McKinsey & Company 2

The next generation of software development involves tooling that aids in the development of software applications, improving

processes and software quality across each stage of the software development life cycle, including AI-enabled development and

testing, as well as low-code/no-code tools

Technology or tool kit Life cycle stages affected

Low-code/no-code platforms

Graphical user interface (GUI)–based platforms

for nondevelopers to use in building apps

Microservices and APIs

Self-contained modular pieces of code that can

be assembled into larger applications

AI “pair programmer”

Code recommendations based on context from

input code or natural language

Infrastructure-as-code

Configuration templates to provision infrastructure

for applications using Terraform, Ansible, etc

AI-based testing

Automated unit and performance testing to

reduce developer time spent on testing

Automated code review

Automated software checks of source code

through AI or predefined rules

Development

and coding

Planning

and analysis

Deployment and

maintenance
Testing

Architecture

design

Next-generation software development

What is this trend about?

Source: McKinsey analysis

McKinsey & Company 3

Why should leaders pay attention?
Developers will focus more on the capabilities their applications would enable than on the details of building the apps

Source: Gartner; “Software development AI market overview,” IndustryARC; Intelligent process automation and the emergence of digital automation platforms, Red Hat, February 2018; A maturing

DevSecOps landscape, GitLab, May 4, 2021; Forrester Analytics Business Technographics Developer Survey, 2020; Infrastructure as code security insights, Snyk, 2021

Growth in

market size

Growth in size of

market for

software

development,

CAGR for

2021–26,

reaching

~$600 million

by 2026

~21%

Greater

adoption

Share of new

application

development

that will leverage

low-code/no-

code by 2025

(vs <25% in

2020)

~70%

Augmented capabilitiesGrowth in market and adoption
As repetitive tasks

become automated

and resource

requirements to

build digital

products decrease,

developers will

focus on adding

new, innovative

features

Many methods,

including CI/CD

and infrastructure-

as-code, will

benefit from cloud

migration and

accelerate this

transition

Reduced

resolution

time

<1 day

Time to resolve

configuration

issues reported

by ~75% of

companies with

automated

infrastructure-

as-code security

testing

Reduction in

development

time due to low-

code/no-code

applications

Up to ~90%

Faster

development

Increase in

deployment

speed reported

by ~60% of

developers,

driven by

practices such

as continuous

integration and

continuous

delivery (CI/CD)

~2×

Faster

deployment

Share of

respondents

saying they use

AI and ML to

test better and

faster

~37%

Faster code

testing

Next-generation software development

McKinsey & Company 4

Why are the technologies
interesting, compared with
what already exists?

Automated configuration and monitoring

through infrastructure-as-code reduces

downtime and increases overall productivity

and security

Manual infrastructure configuration and

monitoring involve high mean time to restore

(MTTR), security risks, and task repetition,

leading to inefficient resource utilization

AI-based pair programmers are making solo

developers more efficient and improving quality

of code

Developers working together to write code

as ‘pair programmers’ on the same

workstation expend a high number of person-

hours to build the program

Greater participation of ‘citizen developers’

(business users who have insignificant

technical experience but are able to build

business applications without involving

technical teams) facilitates quick development

of solutions more aligned to business needs

Reliance on dedicated developers to

participate in every step of the development

cycle, from planning to maintenance,

contributes to higher costs and talent gaps

Fully automated CI/CD pipelines enable

lower disruption, higher code quality, and

drastically shorter development cycles

Development cycles are slow because teams

experience interruptions, code has more

defects, and time is spent on manual tasks

From manual, time-intensive

work flows and techniques …
… to automated, simplified, and

faster development techniques

Next-generation software development

Source: McKinsey analysis

McKinsey & Company 5

What are the most noteworthy technologies?
Across the entire software development life cycle, technologies are already improving developer velocity

Next-generation software development

1. Planning and

analysis
3. Development and coding

2. Architecture

design
4. Testing

5. Deployment

and maintenance

Infrastructure-as-code AI-based testing Automated code reviewAI pair programmer Microservices and APIs

Higher scalability as

configuration templates are

used to set up new

environments rapidly and

consistently

Reduced risks as

configuration templates

eliminate possibility of

human error

Faster, more efficient

testing via smarter

automation

Improved test coverage

and effectiveness, with

automated script writing

expected to exceed 80% of

test coverage within the next

decade and to auto-generate

insights for improvement

Rapid development as

developers code faster

with reduced friction to aid

“developer flow”

Enabler of automatic

translations and low-

code/no-code tools

Faster, more efficient code

reviews with greater

coverage as a result of

eliminating manual inputs

and removing human biases

Faster development as

microservices and APIs

serve as building blocks

companies use to

effortlessly add functionality

to software, unlocking

significant business agility

New revenue streams as

APIs can be provided to

customers in an as-a-

service model and

externally to other

businesses for integration

5McKinsey & Company

Low-code/

no-code

platforms

Standardized tools and processes that scale tech innovation via reuse of components

Acceleration application development through plug-and-play software components

Stronger business alignment as a result of bringing technical requirements closer to business units

Automated deployment of models into production applications

Augmented monitoring and maintenance (eg, model retraining) to minimize performance degradation

Source: Expert interviews; McKinsey analysis

Not exhaustive

McKinsey & Company 6

What industries
could be most
affected?
Beyond the information

technology and

electronics industry,

these technologies will

have an impact on

software development

across all industries by

reducing digitization

challenges

Many industries are

already reaping the

benefits of low-code/no-

code platforms, given their

common qualities and

requirements

Industry Examples Common industry qualities

Heavily

process-

based

industries

Significant

customization

requirements

Rapid pace of

innovation to

meet evolving

customer

needs

Compliance

requires a wide

variety of

frameworks,

protocols, and

regulations,

which typically

vary by region,

license

agreement, etc

Next-generation software development

Source: Expert interviews; McKinsey analysis

Financial services

Healthcare systems and

services; pharmaceuticals

and medical products

Case management processes for handling

customer data, tailored and specific

processes for high-risk patients, development

and testing of new drugs, etc, can be

customized by healthcare providers

Retail Consumer-friendly front-end applications can

be rapidly created and tailored to the needs of

an organization and its customers

Manufacturing processes in

automotive and assembly

and aerospace and defense

Production floor management allows

industrial engineers to optimize operations,

reduce training expenses for new developers,

reduce production floor failures, and

standardize safety/handover protocols

Evolving business rules for processes such

as onboarding, know your customer (KYC),

and customer due diligence can be

continuously handled by business analysts for

efficiency

High industry relevance Medium industry relevance

McKinsey & Company 7

Who has successfully created impact with next-generation
software development?

Source: Company websites; expert interviews

Leading players across industries have already leveraged advanced DevOps tools to optimize their SDLC1

Stage of SDLC1 Technology Example

Automated

CI/CD

Capital One leverages microservices and automated CI/CD to increase delivery speed

without compromising quality through reusable building blocks and generation of templated

pipelines

Development

and coding

AI-based code

reviews

Atlassian uses AI-based tools by Amazon Web Services to improve code performance by

identifying code paths that demonstrate poor CPU2 utilization or latency

Deployment and

maintenance

AI-based test

automation

Goldman Sachs uses the AI-based tool Diffblue Cover to generate unit tests for legacy

software, leading to a 180× increase in the speed of writing tests for a core back-end application

Testing

Infrastructure-

as-code

Decathlon used infrastructure-as-code to automate infrastructure deployment, reducing

deployment time from weeks to 30 minutes, allowing IT teams to focus on more complex tasks

Architecture

design

Next-generation software development

1Software development life cycle.
2Central processing unit.

McKinsey & Company 8

What uncertainties must be resolved for the trend to achieve scale?

Next-generation software development

Comprehensive

monitoring and

version control is

required to ensure

errors do not spread

across servers

Fragmented

vendors could

disrupt integrated

applications, given

uncoordinated

changes and

upgrades

Infrastructure-

as-code

Generated code

may be unusable

or inefficient and

may have

security

vulnerabilities

Coders can be

steered in the

wrong direction if

tools are not

regularly updated

with the standards

or trained on

clean, fast code

AI “pair

programmer”

Customizing

APIs is difficult

without significant

time and effort

APIs introduce

security risks by

adding another

attack layer that

can be exploited

Microservices

and APIs

Low-code/no-

code platforms

Modest amount of

customization is

possible, compared

with traditional

programming

languages

Monitoring and

debugging

applications is

difficult, especially

when they are

integrated across

several low-code/no-

code platforms

Automated

code review

Tools do not

identify all

defects and

inefficiencies in

code

Autonomous

tools are

typically

specialized (eg,

by programming

language, test

type)

AI-based

testing

Companies over-rely on

automated testing/reviews when

this tech scales; humans do not

consistently check for errors in test

and review outcomes

8McKinsey & CompanySource: Expert interviews; McKinsey analysis

McKinsey & Company 9

What are some topics of
debate related to the
trend?

3

2

1
While low-code/no-code platforms help teams rapidly prototype or enable

citizen developers to take over some of the work developers do, they are still

not flexible enough to reduce development work at every stage of the software

development life cycle (eg, when legacy systems require upgrades)

From a cultural standpoint, will teams—both
developers and non-developers—embrace or resist
next-generation technologies?
Automation technologies reduce time spent on development, which raises

concerns for employees whose workflows are highly automatable; developers,

testers, and analysts may be reluctant or eager to switch to new technologies,

depending on job security, technical comfort, etc

To what extent can no-code tech reduce the need for
traditional software developers?

What intellectual-property issues might affect code
written by an AI application?

As companies leverage AI generation tools, there is a concern around

ownership: Will the company that developed the application own it, or will it

belong to the AI-enabled code generation tool provider?

9McKinsey & Company

4 To what extent will business units take responsibility
for the ‘health’ of applications?

As next-generation software brings development capabilities to “citizen

developers” embedded in business units, questions about organizational

structure and responsibilities emerge—eg, as business users create

applications, who is responsible for maintaining them?

Next-generation software development

Source: Expert interviews; McKinsey analysis

McKinsey & Company 10

Additional resources

Related reading

Developer Velocity: How software excellence fuels business performance

Security as code: The best (and maybe only) path to securing cloud applications and systems

Developer Velocity at work: Key lessons from industry digital leaders

Next-generation software development

https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/developer-velocity-how-software-excellence-fuels-business-performance
https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/security-as-code-the-best-and-maybe-only-path-to-securing-cloud-applications-and-systems
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/developer-velocity-at-work-key-lessons-from-industry-digital-leaders

