
Telecommunications, Media, and Technology

From box to cloud: An approach for
software development executives
By: Santiago Comella-Dorda /// Chandra Gnanasambandam /// Bhavik Shah /// Tobias Strålin

January 2015
Copyright © McKinsey & Company, Inc.

2
Telecommunications, Media, and Technology
From box to cloud: An approach for software development executives

As the world moves to cloud-based software, many software de-
velopment executives wrestle with transitioning from packaged
to cloud products. Pointers from successful software vendors can
ease both the decision and ultimately the move.

to leverage new cloud architectures, they often
face a number of challenges. Conversations with
senior software development executives surfaced
a number of concerns and questions regarding
this transition.

What kind of cloud-architecture should they tar-
get? Should developers use public infrastructure-
as-a-service (IaaS) or platform-as-a-service (PaaS)
solutions or choose the private cloud? Do they
need to rewrite their entire codebase?

How does the organization manage the transition
to its target state—from legacy architecture to
cloud-based services-oriented architecture? How
long should the transition take and what are the
key steps? Should the company wait until cloud
and on-premise products achieve parity?

What changes should be made to development
and operating models? Should development
methods be changed? How could this shift affect
software release cycles? Will the company have to
change the way it engages with customers?

What capability and cultural shifts does the orga-
nization need? How should a company build the
necessary talent and capabilities, what mindset
and behavioral changes do they need, and how do
they select the right development, IT, and infra-
structure approaches?

A deliberative process begins with a careful con-
sideration of which codebase type, architecture
modification, and cloud infrastructure is most
appropriate. Then—to ensure successful execu-
tion on the choice made—software executives will
need to make several commitments regarding the
scope of the product, the approach to develop-
ment, and the allocation of resources.

Recent growth in cloud-based software as a ser-
vice (SaaS) is expected to continue at 20 percent
each year through 2018, when the global market
could reach nearly $85 billion. Switching from pack-
aged or “on premise” software to SaaS has a num-
ber of benefits that include improved user experi-
ence and lower delivery and support costs. It also
enables companies to access new markets and
incorporate innovative third-party cloud software.

At this point, however, SaaS remains something of
an afterthought in the portfolios of leading soft-
ware vendors. A recent report estimates that only
8 percent of the revenues generated by the
top 100 software vendors originate from SaaS
models—and seven of the ten biggest companies
draw less than 5 percent of their software rev-
enues from SaaS. Other research shows that the
SaaS penetration in most software app categories

remains low today,
ranging from 1 to
36 percent. By
2018, however, its
share should
increase materially,
achieving up to
72 percent penetra-
tion with some apps.

While many vendors have yet to jump onto the
SaaS wagon, a few that have been delivering
SaaS experiences for years are busy upgrading
their technical architectures to implement the
latest generation of cloud technologies. These
include new persistence and database models
(in-memory or NoSQL databases, for example),
faster analytical platforms, adaptive user interfac-
es, and elastic computing, among many others.

As companies attempt to transition packaged soft-
ware to SaaS or upgrade existing SaaS solutions

SaaS penetration
will double
by 2018—and
reach more than
20 percent

3

Choosing the right approach

Software companies who are considering making
the switch to cloud software face three critical de-
cisions, and their optimal way forward will depend
on their main objectives and starting points.

The first decision concerns whether it makes more
sense over time to choose a unified codebase for
both packaged and cloud software or to have a
separate one for each. Ultimately, this decision
comes down to a few key factors. First, the organi-
zation’s long-term vision is important when deter-
mining the ultimate purpose of the application. Is
the team trying to build an optimized application
for the cloud or is it attempting to leverage specific
benefits of the cloud, while providing additional
options to customers? The second issue concerns
the maintenance costs for two codebases. In this
case, how long does the company plan to continue
with both packaged and cloud software products,
and is feature parity required? For many software
vendors, it seems likely that packaged software
suites won’t go away anytime soon. The final factor
involves talent and culture. Does the team have the
desire and attitude required to learn new technolo-
gies and unlearn past coding practices?

When a unified codebase makes sense. A unified
codebase might be preferable if current custom-
ers view the cloud as just another channel. That is,
the company does not expect all of its customers
to transition away from on-premise software in the
short to medium term (see text box, “When less is
enough”). Or the company might not need best-of-
breed cloud architecture to take advantage of the
basic cloud benefits (including elasticity, scalability,
and low-cost). A unified codebase works when the
company has to maintain and manage multiple ver-
sions of the product. From a practical standpoint,
another reason to choose a unified solution is that
a company has evidence that its development
teams are willing not only to learn new technology
but to unlearn past coding practices as well.

When to choose separate codebases. Maintaining
separate codebases for packaged and cloud soft-

ware may be ideal when managers see the cloud
as the key channel for future growth and expect to
phase out the on-premise product. If customers
expect the cloud-based product to be different in
terms of look and feel compared with the desk-
top version and also expect it to include features
provided by other cloud-based offerings (weekly
releases, better scalability, and support for social
tools, for instance), then separate codebases may
also be the right choice. Other reasons to opt
for separate codebases may be the fact that the
company doesn’t have to manage feature parity
between both cloud-based and on-premise prod-
ucts, since it will soon phase out the latter or the
software team must completely rethink the user
experience and has the required skills to execute.

The second critical decision: companies can
choose to refactor and “re-architect” on the go or
build an entirely new architecture. When making
this decision, leaders should consider two factors:
the viability of the current architecture given the
projected road map of the company’s software
products and the time-to-market requirement.

When to refactor. Refactoring is typically much
faster and preferable if the current architecture
might not be ideal for the cloud architecture but
does have basic structural elements such as iden-
tifiable layers. It also makes sense if developers
can port multi-tier applications to cloud archi-
tecture without undertaking a complete rewrite.
Another point in refactoring’s favor is when the
company needs to release the first cloud-based
version as soon as possible. Fully-refactored,
services-based architecture can help drive fre-
quent and small releases but is not a necessity to
get started with the cloud-based product.

When to design a new architecture. Develop-
ing a new architecture makes sense if the cur-
rent design is just not suitable for the cloud. For
example, it might be a monolithic architecture
that demonstrates symptoms of “spaghetti” code.
Another consideration is the architecture’s scal-
ability. Sometimes an architecture originally built
for on-premise isn’t really designed to scale up to

4
Telecommunications, Media, and Technology
From box to cloud: An approach for software development executives

One software company released the first version of its application lifecycle software suite nearly a decade
ago. As is typical of many packaged applications, the product had a two- to three-year release cycle. Five
years later, this company began to develop a cloud version to achieve some of the benefits the technol-
ogy provides, such as scalability, elasticity, ease of deployment, and minimal up-front investment for
customers. As the software team began its migration journey from packaged to cloud software, it made
two key decisions:

Use a single codebase. The packaged version of its software will have a significant customer base going
forward. The team decided early on that it would use the same codebase for both products and adopt a
plug-in-based architecture for cloud-specific components. This decision allowed them to utilize 90 per-
cent of the codebase for both versions of the software.

Refactor as you go. The packaged version is a three-tier application with the server running on the
Windows platform. The product has a services-based architecture, but the services were not modular
enough for a good cloud-based application. Since the team had not created the product in the cloud, it had
difficulties making the transition. Team members chose refactoring in order to build a “minimum viable
product” for the cloud and then continued refactoring existing codebase after releasing the product.

Team leaders highlighted several lessons they learned along the way. For instance, the use of advanced
engineering systems and the team’s “can-do” attitude were big transition enablers. They also learned that
cloud-based products require three to four times more diagnostics capability compared with packaged
software. Finally, they noted that the customer engagement model can be very different when product re-
leases take place every three weeks instead of every two years. Today, approximately two million develop-
ers use the cloud version.

When less is enough: Software’s measured journey to the cloud

Source: McKinsey analysis

Desktop Browser Plug-insClient tier

Main database Warehouse database

Data tier hosted on SQL server

Web services

Middle tier on Windows Azure

Data tier on Azure SQL Database and Azure Storage

Component 1 Component 2 Component 3

Web services

Component 1
service

Component 2
service

Component 3
service

Shared framework service

Cloud plug-in for authentication
Cloud plug-in for file
storage

Packaged software architecture On-cloud software architecture Refactoring to be done

Middle tier on IIS server

Component 1 Component 2 Component N

Shared bulky
service libraries

Desktop Browser Plug-insClient tier

Main database New file storage for cloud

Same codebase. Plug-in
architecture allowed to
maintain 90% codebase
same for both packaged and
cloud-based products.
Cloud-specific components
are attached as plug-ins

Say no to fully
re-architecting up front.
Original bulky service library
layer was refactored over two
years as customer and
design needs became clearer

5

a larger number of users or it does not support
multi-tenancy. Companies often build up related
“technical debt” because of prior architecture
decisions. For example, a payroll processing com-
pany decided to overhaul their current architecture
to be able to move to open stack since portability
is a key requirement for them. The company built
some of the new system from the ground up, while
tactically leveraging stable calculations engines
and other components. Even while re-architecting
much of the stack, the company didn’t update a
few mature components, including some on main-
frame, since the risks of updating those compo-
nents outweighed the potential benefits.

Another critical decision is the choice of public
versus private cloud infrastructure. Companies can
build their products on top of either privately
hosted platforms or public IaaS or PaaS ones that
rely on a service provider. This decision primarily
concerns economies of scale, since the scale of

infrastructure
deployment, the
company’s tolerance
for risk (data security
or performance
issues, for example),
and regulatory
requirements will
ultimately drive it.
IaaS platforms

provide flexibility and control but entail the trade-
off of additional complexity and the up-front effort
required to build a user-ready service for them.
Conversely, PaaS platforms often offer many capa-
bilities that can help companies accelerate the
transition to the cloud, but these platforms gener-
ally include proprietary or vendor-specific capabili-
ties. As such, they require software created for a
specific vendor’s platform and stack, thus locking
in those suppliers. While a small degree of vendor
lock-in does exist with IaaS systems, it is relatively
easy to plan around those areas.

When to go for a private cloud. Private clouds
work when the developer has sufficient inter-
nal scale to achieve a comparable total cost of

Data security and
deployment scale
are factors in mak-
ing the public ver-
sus private cloud
decision

ownership to public choices. That typically means
it employs tens of thousands of virtual machines
(VMs). It is also the right choice if at least one of
the following four considerations is critical for the
specific system or application and therefore pre-
cludes the use of the public cloud: data security,
performance issues, control in the event of an out-
age, or technology lock-in. A final factor involves
regulatory requirements that might restrict efforts
to store customer data outside of set geographic
boundaries or prevent the storage of data in multi-
tenant environments.

When to choose the public cloud. Developers
should consider the public cloud approach if the
project lacks sufficient scale (will not involve tens
of thousands of VMs, for example) or a high de-
gree of uncertainty exists regarding likely demand.
Using a public cloud is a more capital-efficient
approach, since building a private cloud requires
significant resources that the company could
probably invest more effectively in the mainstream
business. Another reason to go public: the sys-
tem or application is latency tolerant. Experience
shows that the latency levels on public clouds can
vary by as much as 20 times depending on the
time of the day. It also makes sense if there are no
specific regulatory requirements that applications
store the data in a particular place beyond perfor-
mance needs. Even if companies decide to use
a private cloud for their most critical applications,
many decide to use public cloud for certain more
basic use cases (dev/test workloads, additional
temporary capacity, for instance).

Six cloud-hopping design principles

Once executives have made their codebase, ar-
chitecture, and infrastructure decisions, they begin
developing their cloud-based software. To better
understand how software players successfully
make the transition, McKinsey reviewed a number
of external cases and conducted in-depth inter-
views with leading software players. Those who
succeed in the journey from on-premise to cloud
software development share six commitments.

6
Telecommunications, Media, and Technology
From box to cloud: An approach for software development executives

Shoot for the minimum viable product instead
of feature parity. Organizations moving products
to the cloud often discover that achieving full-
feature parity could take several years. Instead,
successful vendors often decide to release a
minimum viable product (MVP) to customers in
six to nine months. This strategy allows them to
test their architecture and functionality quickly.
The approach also forces them to think deeply
about which types of product functionality deliver
sought-after core customer experiences and what
they have to emphasize to get that functionality
right. By putting a workable MVP with the most
important features in user’s hands as quickly as
possible, the team is able to both gather crucial
initial customer feedback and rapidly improve on
their cloud-based development skills.

Treat users as part of the day-to-day develop-
ment team. Developers need to engage with
their customers early and often—and shifting to a
cloud model opens new ways of interacting with
them. Teams can get feedback from customers in
near real-time as soon as—or even before—they
release a feature. User engagement also allows
developers and product managers to ask custom-
ers to prioritize their needs via blogs when the
product is in the concept phase and provide a
basic product to specific early adopters. They can
then codesign the full-featured version with them.
Experience shows that collecting early feedback
can help teams shape how they prioritize the fea-
tures that are still in development.

Running the application centrally for all customers
also opens up new capabilities. Developers can,
for instance, employ logging and analytics to un-
derstand customer actions, taking a highly data-
driven approach to tracking their usage patterns.
Likewise, performing “A/B” features and function-
ality testing gives teams a data-driven approach
to decision making. The 2012 Obama presidential
campaign in the United States, for instance, used
about 500 A/B tests on the interaction, copy, and
images used on its Web page. The approach
increased donations by nearly 50 percent and
sign-ups by over 160 percent.

The cloud also enables teams to roll out func-
tionality in a controlled manner (first 1 percent of
customers, then 5 percent if all goes well, then
10 percent, etc.).

Expect and tolerate failures. Cloud infrastructure
brings many benefits including the ability to grow
or shrink resources for an application in real time.
However, the shared nature of cloud infrastructure
can pose challenges because of factors beyond
the developer’s control, such as hardware or
network failures or slowdowns. And, as with all
customer data centralized in the cloud environ-
ment, developers need to design an architecture
for the application that can accommodate these

failures and work
around them.

For success, com-
panies will need to
develop a mindset
that accepts failures.
Without it, devel-
opers will hesitate
to make changes,
making release cy-
cles grind to a halt.
One Internet content
provider learned this

lesson the hard way after experiencing service
disruptions due to a third-party Web services
provider failure. In response, the company made
its applications more robust in the face of such
disruptions. Now, if similar problems occur, their
apps are designed to provide a somewhat dimin-
ished customer experience rather than a complete
crash. On top of this, to simulate random failures,
the company created a special tool in the form of
a script that will indiscriminately kill infrastructure
services. This approach enables it to test applica-
tion responses against failures that may eventually
happen. It also helps teams learn about challenges
specific to cloud-based development and incorpo-
rate customer inputs early.

Adopt agile and DevOps approaches. Compa-
nies should adopt agile thinking and DevOps,

To be successful,
companies need to
develop a mindset
that accepts failures
that are beyond the
developer’s con-
trol and design an
architecture to work
around them

7

to hold their software developers—not the code
testers—accountable for quality. These companies
seem to blur the boundaries between development
and QA roles. The idea is to allow the software
developers to resolve critical issues immediately
as they become apparent. This approach requires
them to deploy critical fixes continuously in ad-
dition to running short release cycles. It makes
sense: despite the iterative nature of agile software
development, cloud users will not accept or use
apps with significant unaddressed issues. And it’s
also efficient: a developer can fix a bug introduced
just two weeks ago much quicker than one that
was introduced six months or two years back.

Another very important factor is that developers
understand that fixing SaaS issues is fundamen-
tally different from fixing problems with packaged
software, which requires them to adopt new prac-
tices. It is normal, for example, to expect custom-
ers to take their servers offline to debug a problem
for on-premise software. This is not an option for
service-based software, since customers across
multiple time zones are using the service. Building
advanced diagnostics and tracing capabilities in
the software is much more imperative for cloud-
based software. Another similar example is NoSQL
database adoption, which requires a significant
unlearning of how developers worked with tradi-
tional, relational databases.

Invest in cutting-edge capabilities and automated
test environments. McKinsey’s observations of
successful software developers suggests that
hiring top development talent who can inject new
external expertise into the organization at the
operational and management levels is critical to
making the switch to cloud software. Another

crucial enabler is
investing in tools and
infrastructure to
power the cloud-
focused develop-
ment model. The
organization should
shift all build,
integration, and

Box-to-cloud suc-
cess requires ongo-
ing, automated test-
ing and integration
and an advanced IT
environment

a software development approach that focuses on
product delivery, quality assurance (QA), feature
development, and maintenance releases. DevOps
builds on many “agile” concepts, like working
in cross-functional teams and in short iterations
all the way to deployment. Software executives
also need to integrate their QA, operations, and
security organizations with their R&D teams and
schedule at least one release per month. Continu-
ous integration, including integration into the main
software branch, should be implemented with at
least daily frequency. Releases should be sched-
uled as frequently as possible to ensure early
user feedback. The release cycle can range from
several releases per day to one per month. Once
codebase is refactored into granular services, it is
possible to achieve very short release cycles with-
out destabilizing the entire product base.

The need for this shift goes to the heart of the dif-
ferences between packaged and cloud software.
With packaged software, releases are expensive
because teams have only one true chance to
launch a product. Consequently, releases occur
once or a few times every 24 months. In a cloud
environment, in contrast, most vendors find that
incremental releases reduce the complexity of
deployment and the magnitude of potential failures
at the time of release. The incremental release
approach leads to dozens of small releases for an
individual product.

According to a recent study by Puppet Labs—a
leading DevOps software provider—teams that
embrace DevOps and continuous release practic-
es deploy code 30 times more frequently, have half
the number of production failures, and can restore
services 12 times faster after a production issue.
McKinsey research shows that embracing agile
thinking increases team productivity by an aver-
age of 27 percent, boosts the timeliness of feature
releases by 30 percent, and decreases the rate of
residual defects by 70 percent.

Give developers QA and testing responsibility. An-
other hallmark of successfully moving from pack-
aged to cloud software is the choice of companies

8
Telecommunications, Media, and Technology
From box to cloud: An approach for software development executives

testing operations to a continuous and automated
model that supports rapid release cycles. Leading
cloud software providers—such as some of the
world’s largest search and social media compa-
nies—regularly build and test the entire codebase
several times a day. Companies can reduce these
intervals to as little as 15 minutes, but doing so
requires a very advanced IT environment. Leading
cloud players provide environment where develop-
ers can test code change against any of the
portfolio products that could be potentially affect-
ed. This enables designers to conduct solid
integration testing on their own before submitting
the code for real integration.

  

Even if it generates significant buzz, cloud-based
SaaS remains a relatively small part of most lead-
ing software developers’ product portfolios. As the
share of cloud-based software grows, develop-
ers will need to increasingly focus on transition-
ing away from packaged, on-premise software.
Reaching carefully considered technology deci-
sions and committing to several organizational and
operational approaches to developing software as
a service can help developers successfully transi-
tion from packaged to cloud software.

The authors wish to thank Buck Hodges, En-
gineering Director for Microsoft Visual Studio
Cloud Services, and Roberto Masiero, VP ADP
Innovation Labs, for their contributions to the
article. The authors would also like to thank Alex
Ince-Cushman, an associate principal, and Akash
Shah, a consultant in McKinsey’s Silicon Valley
office for their contributions.

Santiago Comella-Dorda
is a principal in McKinsey’s Boston office.
santiago_comella-dorda@mckinsey.com

Bhavik Shah
is an expert in McKinsey’s
Silicon Valley office.
bhavik_shah@mckinsey.com

Tobias Strålin
is a principal in McKinsey’s Seattle office.
tobias_stralin@mckinsey.com

Chandra Gnanasambandam
is a principal in McKinsey’s
Silicon Valley office.
chandra_gnanasambandam@mckinsey.com

