
42

Harald Bauer and

Ondrej Burkacky

When software meets hardware:
Excellence in embedded-software
development

For many years, software was an afterthought for
semiconductor companies. When software
did get attention, it was limited mostly to basic
firmware operating the integrated circuits (ICs)
that the companies produced. But in the last
five years, as hardware has become increasingly
commoditized and customers demand
shorter time to market, the importance of
embedded software has grown.

At one time, hardware designers were the
dominant class of engineers in most semiconductor
R&D organizations. Now, given the rise of
mobile devices, most IC designers employ more
software developers than hardware engineers.
In consumer-facing markets, that evolution has

Embedded software has become essential to the success of most types of new

semiconductors. Yet some semiconductor companies still resist the idea that they are

selling not just hardware but also, increasingly, software. A blueprint can help in

better integrating them in your organization.

come quickly. Through work in the wireless-
handset sector, it was observed that more than 60
percent of engineers are engaged in software
development or testing, compared with roughly
40 percent three years ago and less than
20 percent in 2008.

Companies undergoing the transformation from
hardware- to software-centric business models
typically find that several aspects of their existing
processes lead to productivity losses, quality
problems, rework due to late defect detection, and
budget overruns. These include lack of
modularization, manual testing regimens, and
hardware-led development processes that
do not fit the agile-development model required

Harry Campbell

43

for software. Several ways to overcome these chal-
lenges have been identified, but the three
discussed below usually have the most impact.

Giving software its own driver’s seat

Because their historical operations were
hardware-centric, semiconductor companies’
supporting structures remain that way.
Hardware timelines drive both overall company
planning cycles and the operations of embedded-
software divisions. This approach is not well
matched to the agile-development methodology
common in software development. (Software
releases tend to be in ranges of hours or days,
whereas new hardware typically takes months to
develop.) Instead of software development
coming along for the ride with hardware develop-
ment, these activities should be placed on
separate but coordinated tracks, with frequent
release cycles. To achieve this, project clocks
should be aligned to an overarching system plan,
featuring smooth integration and timely
definition of requirements on both the hardware
and software sides of the development team.
Parallel development, with frequent release cycles,
should be the desired end state.

Overcoming practical obstacles

From a system-architecture standpoint, it may
seem difficult to place embedded software
on a different development track than hardware.
Certain portions of the software, such as

firmware, should be closely linked to the hardware.
The use of abstraction layers, however, can help
to decouple software stacks and allow for internal
optimization of these modules’ interfaces
and communications protocols. This decoupling
approach can also make it easier to migrate
software stacks to new hardware, thereby fostering
reuse and cutting down on the need for rework.

Release cycles can be automated using a software-
development tool chain1 that handles automatic
release management with multiple modules and
ideally includes the “virtual prototype” of the
target hardware for verification purposes. Several
players in the embedded-software field have
shown that variable release cycles of as little as
three hours to one week are feasible, gaining
significant flexibility, reducing bug-fixing effort,
and shortening the overall project timeline.

Integrating verification processes

The verification process should transition from a
rigid hardware focus to one that has an integrated
development tool chain with a fully automated
verification work flow. Testing should be continu-
ous, and a priority should be finding bugs early
and fixing them before they get integrated on the
system level. Continuous testing can be made
possible by virtualizing the entire system stack
(for example, in wireless, including the base
station, “air” interface, mobile antenna, mobile-
software stack, and baseband chip) and then

Software and hardware development should be
placed on separate but coordinated tracks, with frequent
release cycles.

1	�In this article, software
tool chains are referred to in
their purest sense—that
is, a set of programming tools
with logical, sequential
relationships—rather than
the common usage that
refers to any collection of
programming tools.

44 McKinsey on Semiconductors Autumn 2013

conducting automated testing of the virtual stack
at “precommit” (when the developer submits
a final change request to be included in the system).
A reduction of the defect density by more than
50 percent is feasible with this approach.

Seeing the impact

Programs employing these levers can generate
significant impact. Several companies have
improved time to market by 30 to 40 percent,

while product-quality scores rose by up to
50 percent and overall productivity increased by
roughly 30 percent (exhibit).

Such a transformation can take more than
18 months, but initial results from some
initiatives can deliver measurable improvement
in a much shorter time. Companies can
use a subset of development projects as pilots to
implement and refine the new methodologies.

Exhibit Excellence in embedded systems is a key performance lever.

MoSemiconductors 2013
Software toolchain
Exhibit 1 of 1

Development time

Reduced cycle time by parallelization of feature
development and stabilization

Mobile-phone-platform development, months Product-development effort, person-months,
comparable complexity

Reduced overall project budget by improved
hardware/software synchronization

Lower defect density due to
strict quality gates

Mean time between failures, hours Average release-schedule adherence, %

Significantly better predictability and quality of
releases with “precommit” verification

Defect density

33

–42%

50%

Previous approach Current approach

19

3,500

Previous approach Current approach

2,000

450

Before With quality gates

300 60

Previous approach Current approach

100

–43%

45When software meets hardware: Excellence in embedded-software development

Companies should initially aim for a 10 to
20 percent decrease in project timelines and
a significant productivity increase within
the first six months. An example of a quick win
would then be delivered by using a stringent
requirements-definition process to ensure
effective use of resources, as it drastically cuts
down on rework and unnecessary develop-
ment efforts.

Tighter integration of hardware and software
could deliver significant benefits to many
semiconductor companies. Furthermore, the
measures described above have delivered
significant time-to-market improvements while
maintaining a high level of quality in real-
world situations.

Harald Bauer (Harald_H_Bauer@McKinsey.com) is a director in McKinsey’s Frankfurt office, and Ondrej Burkacky

(Ondrej_Burkacky@McKinsey.com) is an associate principal in the Munich office. Copyright © 2013 McKinsey &

Company, Inc. All rights reserved.

